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Introduction

Introduction

A number of important multivariate methods build on the algebra of
multivariate linear regression, because they are least squares multiple
regression systems, i.e., systems where one or more criteria are
predicted as linear combinations of one or more predictors, with
optimal prediction defined by a least squares criterion.

In this module, we discuss some key results in multiple regression and
multivariate regression that have significant implications in the
context of other multivariate methods.

We illustrate the algebra with a couple of theoretical derivations.
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Random Multiple Linear Regression: The Model

The Model

Unlike the fixed score multiple regression model frequently employed,
this one assumes that both predictor and criterion variables are
random.

Suppose we have a random variable y that we wish to predict from a
set of random variables that are in the random vector x.

To simplify matters, assume all variables are in deviation score form,
i.e., have means of zero.

The prediction system is linear, so we may write

y = β′x + e (1)
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Random Multiple Linear Regression: Solution for β

Solution for β Weights

We choose β to minimize the expected squared error, i.e., to
minimize E(e2).

It is easy to see (C.P.) that

E(e2) = σ2
y − 2σyxβ + β′Σxxβ (2)

Minimizing this involves taking the partial derivative of E(e2) with
respect to β, setting the resulting equation to zero, and solving for β.
The well-known result is that

β = Σ−1
xx σxy (3)
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Random Multiple Linear Regression: Solution for β

Multiple Linear Regression: Solution for β Weights

The preceding result assumed a single criterion variable y .

In least squares multivariate linear regression, we have 2 or more
criteria, so the model becomes

y = β′x + e (4)

In this case, we wish to select β to minimize the overall average
squared error, i.e., to minimize Tr E(ee′). It turns out that the
solution is essentially the same as before, i.e.,

β = Σ−1
xx Σxy (5)
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Orthogonality Properties Least Squares β Weights Imply Orthogonality

Orthogonality Properties
Least Squares β Weights Imply Orthogonality

Suppose we have linear regression system where β = Σ−1
xx Σxy . There

are a number of immediate consequences.

One consequence is that x and e are orthogonal, because their
covariance matrix is a null matrix.

Cov(x, e) = E(xe′)

= E(x(y − β′x)′)

= E(xy′) − E(xx′β)

= Σxy − ΣxxΣ
−1
xx Σxy

= Σxy − IΣxy

= 0

Of course, if x and e are orthogonal, ŷ and e must also be orthogonal.
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Orthogonality Properties Orthogonality Implies A Least Squares β

Orthogonality Implies a Least Squares β

We have seen that a least squares β implies orthogonality.

It turns out that, in a linear system of the form y = β′x + e,
orthogonality of x and e implies that the β must be the least squares
β. (You can prove this as a homework assignment.)
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Error Covariance Structure

Error Covariance Structure

As a straightforward consequence of the formula for a least squares β,
the covariance matrix of the errors in least squares regression is

Σee = Σyy − β′Σxxβ

= Σyy − ΣyxΣ
−1
xx Σxy

In this case, Σee is the partial covariance matrix of the variables in y,
with those in x partialled out.
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Coefficient of Determination

Coefficient of Determination

The coefficient of determination R2
pop is the square of the correlation

between the predicted scores and the criterion scores.

As a generalization of something we showed in Psychology 310, it is
easy to prove (C.P.) that Cov(yj , ŷj) = Var(ŷj), and we shall use that
fact below.

The correlation between the jth criterion variable yj and the
predictors is given by

Rj =
Cov(yj , ŷj)√

Var(yj) Var(ŷj)

=
Var(ŷj)√

Var(yj) Var(ŷj)

=

√
Var(ŷj)

Var(yj)

whence

R2
j =

Var(ŷj)

Var(yj)
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fact below.

The correlation between the jth criterion variable yj and the
predictors is given by

Rj =
Cov(yj , ŷj)√
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Coefficient of Determination

Coefficient of Determination

We then obtain

R2
j =

Var(ŷj)

Var(yj)

=
σ′yjxΣ

−1
xx σxyj

σ2
yj

=
σ′yjxβj

σ2
yj
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Additivity of Covariances

Additivity of Covariances

In a least squares linear regression system, we may write y = ŷ + e,
and, because the predicted and error portions are uncorrelated, we
may write

Var(y) = Var(ŷ) + Var(e) (6)

Furthermore, since ŷ = β′x, we may also write

Var(y) = Σyy = [β′Σxxβ] + [Σyy − β′Σxxβ] (7)

This formula gives explicit expressions for the partitioning of variances
and covariances into predicted and error components in least squares
multivariate regression.
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Applications

Applications

In this section, we examine a few well-known applications of the
theory developed in previous sections.
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Applications Regression Component Analysis

Applications
Regression Component Analysis

“Component analysis” is a well-known alternative to common factor
analysis.

Both component and factor analysis are commonly thought of as
“factor analytic methods,” although they have some important
differences.

The best known example of component analysis is Principal
Component Analysis, or PCA.

PCA is a special case of a more general system known as “regression
component analysis” (Schönemann and Steiger, 1976).
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Applications Regression Component Analysis

Applications
Regression Component Analysis

A set of “components” x of a set of random variables y is any set of
linear combinations of y.

Specifically, we write
x = B′y (8)

A regression component system is of the form

y = Fx + e (9)

where x = B′y is a set of components of y, and F, known as the
“component pattern”, is the set of least squares linear regression
weights for predicting y from x.
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Applications Regression Component Analysis

Applications
Regression Component Analysis

Notice that the system is completely tautological in one sense, since
e = (I− FB′)y, and so of course

y = F(B′y) + (I− FB′)y (10)

Once B is established for a given y, the components are uniquely
defined. In a sense, examining B establishes the relationship between
the components and the variables used to construct them.

The real “payoff” for RCA is when the p×m matrix B′ has only a few
columns, so that p, the number of variables in y, is much smaller than
m, the number of components, and yet the error variance is small.
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Applications Regression Component Analysis

Applications
Regression Component Analysis

In a regression component system, once B is defined, then for any set
of data, the “component pattern” F is automatically defined.
Conversely, any given F corresponds to a derivable B.

As an example, suppose we try to derive the facts about F and B.

To begin with, suppose that the scores in y are in deviation score
form. Since x, e, and ŷ are all linear combinations of y, they must
also in deviation score form.

To begin with, let me ask you to derive Σyx , the covariance matrix
between y and the components in x, in terms of Σyy and B.

Before clicking on the button to move to the next slide, take a few
seconds to see if you can derive the answer. (Hint: Σyx = E(yx′).)
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Applications Regression Component Analysis

Applications
Regression Component Analysis

Here is the solution.
Σyx = E(yx′) (11)

But x = B′y, so

Σyx = E(y(B′y)′)

= E(yy′B)

= E(yy′)B

= ΣyyB (12)
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Applications Regression Component Analysis

Applications
Regression Component Analysis

Here is another fairly straightforward problem for you.

Express Σxx , the variance-covariance matrix of the x components, in
terms of B and Σyy , the variance-covariance matrix of the variables
in y. When you have your answer, click on the button to move on to
the next slide.
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Applications Regression Component Analysis

Applications
Regression Component Analysis

Finally, show how to construct a formula for computing F, the
component pattern, from B and Σyy .

Hint: remember that in a regression system, the linear weights β′ for
predicting y from x are computed as ΣyxΣ

−1
xx .

When you have your answer, click on the button to continue on to
the next slide.
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Applications Regression Component Analysis

Applications
Regression Component Analysis

The solution is as follows. In this context, we have already established
that Σyx = ΣyyB, and that Σxx = B′ΣyyB.

In a regression component system, F plays the same role as β′ in the
general multivariate linear regression model. So

F = ΣyxΣ
−1
xx

= ΣyyB(B′ΣyyB)−1 (14)
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